190 research outputs found

    Acid gas removal from natural gas by water washing

    Get PDF
    Projections in the future energy scenario outline an important role played by fossil fuels to meet the increasing global energy demand. A “golden age” has been recently outlined for natural gas, in particular, as the fastest growing and the cleanest of all fossil fuels. Although natural gas is mostly considered to be a “clean” fuel with respect to the emission of pollutants from its combustion, the raw natural gas found in reservoir deposits is not free of contaminants. Among the others, hydrogen sulphide and carbon dioxide are two undesired compounds, which are responsible for the sour or acidic nature of natural gas and must be removed for operational and safety reasons. Acid gas treating is typically performed in facilities built at surface locations, mainly by means of chemical absorption into aqueous amine solutions. However, subsurface technologies may allow to possibly separate the gas undesired compounds directly downhole. The high pressure encountered in this environment makes the use of water as liquid absorbent worth considering. This work investigates the possibility of acid gas removal from natural gas by downhole water washing and presents a preliminary evaluation of the performances of the process, which is assumed to be carried out in the gas production casing that can be represented as a bubble column. A previously proposed correlation for the gas holdup in this type of contacting device operated counter-currently has been used to determine the volumetric mass transfer coefficient for design purposes, considering different raw gas flow rates and inlet acid gas concentrations. By solving a simplified model of a bubble column and by using water flow rates compatible with reinjection into the reservoir, it has been found that it is possible to reduce the H2S content from the inlet concentration to the commonly accepted value to meet pipeline specifications and, depending on the inlet CO2 concentration, to perform a bulk removal of it

    CFD study of an air–water flow inside helically coiled pipes

    Get PDF
    CFD is used to study an air–water mixture flowing inside helically coiled pipes, being at the moment considered for the Steam Generators (SGs) of different nuclear reactor projects of Generation III+ and Generation IV. The two-phase mixture is described through the Eulerian–Eulerian model and the adiabatic flow is simulated through the ANSYS FLUENT code. A twofold objective is pursued. On the one hand, obtaining an accurate estimation of physical quantities such as the frictional pressure drop and the void fraction. In this regard, CFD simulations can provide accurate predictions without being limited to a particular range of system parameters, which often constricts the application of empirical correlations. On the other hand, a better understanding of the role of the centrifugal force field and its effect on the two-phase flow field and the phase distributions is pursued. The effect of the centrifugal force field introduced by the geometry is characterized. Water is pushed by the centrifugal force towards the outer pipe wall, whereas air accumulates in the inner region of the pipe. The maximum of the mixture velocity is therefore shifted towards the inner pipe wall, as the air flows much faster than the water, having a considerably lower density. The flow field, as for the single-phase flow, is characterized by flow recirculation and vortices. Quantitatively, the simulation results are validated against the experimental data of Akagawa et al. (1971) for the void fraction and the frictional pressure drop. The relatively simple model of momentum interfacial transfer allows obtaining a very good agreement for the average void fraction and a satisfactory estimation of the frictional pressure drop and, at the same time, limits the computational cost of the simulations. Effects of changes in the diameter of the dispersed phase are described, as its value strongly affects the degree of interaction between the phases. In addition, a more precise treatment of the near wall region other than wall function results in a better definition of the liquid film at the wall, although an overestimation of the frictional pressure drop is obtained

    Novel gas holdup and regime transition correlation for two-phase bubble columns

    Get PDF
    The gas holdup is dimensionless parameter of fundamental and practical importance in the operation, design and scale-up of bubble columns. Unfortunately, the many relationships between the bubble column fluid dynamic parameters and the various variables characterizing the system make it difficult to find general correlations for the precise estimation of the gas holdup. Wilkinson et al. (1992), in their pioneering paper, proposed a correlation to predict the gas holdup in industrial-scale bubble columns, based on the physical properties of the phases and the operating conditions. However, this correlation lacks in generality, as it does not take in account the bubble column design. In this paper, we propose a generalization of the Wilkinson et al. (1992) gas holdup correlation to take into also the bubble column design parameters. Starting from considerations concerning the flow regime transition, corrective parameters are included to account for the effects introduced by the gas sparger openings, the bubble column aspect ratio and the bubble column diameter. The proposed correlation has been found to predict fairly well previously published gas holdup and flow regime transition data

    Capability of non liner eddy viscosity model in predicting complex flows

    Get PDF
    Paper presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 30 June - 2 July, 2008.The research field of the study is related with turbulence modeling. The general objective is the implementation in a commercial code, of two equations Non Linear Eddy Viscosity Model (NLEVM) which removes Boussinesq linear approximation for the Reynolds stress tensor. The work described in the paper implements a second order k-ε model based over Shih, Zhu and Lumley (1993) [1] and Craft, Launder and Suga (1996) [2] in the finite volume commercial code ANSYS-FLUENT v. 6.3.26, by writing additional subroutines. The model has been validated through experimental and DNS data available in the literature. The benchmarks shown in this paper are the straight Square Duct [8] and the Backward-Facing Step [9, 10]. After the validation, the model has been used for predicting the flow behavior for complex industrial applications. The geometry used is similar to the bowl-shape downcomer of nuclear reactor. This is an application field of interest still under study by the same research group and an international consortium.vk201

    Thermo fluid dynamic Euler-Lagrange CFD analysis applied to wet flue gas desulphurisation technology

    Get PDF
    Paper presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 30 June - 2 July, 2008.Wet Flue Gas Desulphurisation (FGD) technology is the most frequently used scrubbing process for sulphur dioxide (SO2) reduction from coal-fired utility boilers. Wet limestone FGD-plants using Open Spray Tower (OST) technology are the most commonly used. CFD has been used to investigate the gas-liquid fluid dynamics inside a counter-current OST and the heat transfer between the phases. The continuous phase (gas) is modelled in the Eulerian framework while the discrete phase (liquid droplets) in the Lagrangian frame of reference. Simulation results show good agreement with measurements on a pilot plant flue gas cleaning unit. The commercial code Fluent 6.3.26, completed with the necessary subroutines for liquid phase properties and slurry wall interaction, has been used for the calculations.vk201

    The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Full text link
    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.Comment: arXiv admin note: substantial text overlap with arXiv:1705.09078, arXiv:1705.0965

    Bridge pier scour measurement by means of Bragg grating arrays

    Get PDF
    Abstract. This paper deals with a new method to measure scour level at bridge piers. The proposed technique is based on an array of Bragg grating temperature sensors, heated by an electrical circuit. The Bragg gratings in water sense a lower temperature than those buried in the river bed, because of the different heat scattering principles in the two situations. Furthermore the response of each sensor is slower if it is buried in the bed, with respect to the case it is in water. The paper presents laboratory tests, showing the method effectiveness and reliability, and it explains the advantages with respect to other more traditional methodologies to measure scour level

    Bubble aspect ratio in dense bubbly flows: Experimental studies in low Morton-number systems

    Get PDF
    Almost every modelling approach of bubbly flows includes assumptions concerning the bubble shape. Such assumptions are usually made based on single bubble experiments in quiescent flows, which is far away from the flow field observed in large-scale multiphase facilities. Considering low Morton-numbers and the highly deformable interface at medium and large Eötvös-numbers, the evaluation of the bubble shape in such systems under real flow conditions is highly desirable. In this study, we experimentally evaluate the bubble shape (in terms of aspect ratio), at low Morton-numbers, in different bubble column setups and a pipe flow setup under different operating conditions. The bubble shape in the bubble column experiments were obtained with cameras at Politecnico di Milano and Helmholtz-Zentrum Dresden Rossendorf (HZDR) whereas the shapes in the pipe flows were measured by the ultrafast electron beam X-ray tomography system (ROFEX) at HZDR. In the bubble column experiments almost the same shape is observed; conversely, the shape in the pipe flows distinctly depends on the flow conditions. In conclusion, in bubble columns the assumption of a constant shape regardless of the flow conditions is valid whereas in pipe flows the turbulence and shear rates can be strong enough to deform distinctly the bubbles
    • …
    corecore